Translate Page To German Tranlate Page To Spanish Translate Page To French Translate Page To Italian Translate Page To Japanese Translate Page To Korean Translate Page To Portuguese Translate Page To Chinese
  Number Times Read : 132    Word Count: 1164  
Categories

Arts & Entertainment
Business
Career
Cars and Trucks
Celebrities
Communications
Computers
Culture and Society
Disease & Illness
Environment
Fashion
Finance
Food & Beverage
Health & Fitness
Hobbies
Home & Family
Inspirational
Internet Business
Legal
Online Shopping
Pets & Animals
Politics
Product Reviews
Recreation & Sports
Reference & Education
Religion
Self Improvement
Travel & Leisure
Vehicles
Womens Issues
Writing & Speaking
 


   

CNC Training in Chennai



[Valid RSS feed]  Category Rss Feed - http://articlespromoter.com/rss.php?rss=231
By : CNC Training    99 or more times read
Submitted 2019-07-19 05:41:04
Types of CNC Machining Support Software
The CNC machining process employs software applications to ensure the optimization, precision, and accuracy of the custom-designed part or product. Software applications used include:
CAD
CAM
CAE
CAD: Computer-aided design (CAD) software are programs used to draft and produce 2D vector or 3D solid part and surface renderings, as well as the necessary technical documentation and specifications associated with the part. The designs and models generated in a CAD program are cnc training in chennai typically used by a CAM program to create the necessary machine program to produce the part via a CNC machining method. CAD software can also be used to determine and define optimal part properties, evaluate and verify part designs, simulate products without a prototype, and provide design data to manufacturers and job shops.

CAM: Computer-aided manufacturing (CAM) software are programs used extract the technical information from the CAD model and generate machine program necessary to run the CNC machine and manipulate the tooling to produce the custom-designed part. CAM software enables the CNC machine to run without operator assistance and can help automate finished product evaluation.

CAE: Computer-aided engineering (CAE) software are programs used by engineers during the pre-processing, analysis, and post-processing phases of the development process. CAE software is used as assistive support tools in engineering analysis applications, such as design, simulation, planning, manufacturing, diagnosis, and repair, to help with evaluating and modifying product design. Types of CAE software available include finite element analysis (FEA), computational fluid dynamics (CFD), and multibody dynamics (MDB) software.

Some software applications have combined all of the aspects of CAD, CAM, and CAE software. This integrated program, typically referred to as CAD/CAM/CAE software, allows a single software program to manage the entire fabrication process from design to analysis to production.

What is a CNC Machine?: Types of CNC Machines and Machine Tools
Depending on the machining operation being performed, the CNC machining process employs a variety of CNC machines and machine tools to produce the custom-designed part or product. While the equipment cnc training in chennai may vary in other ways from operation to operation and application to application, the integration of computer numerical control components and software (as outlined above) remains consistent across all CNC machining equipment and processes.

CNC Drilling Equipment
Drilling employs rotating drill bits to produce the cylindrical holes in the workpiece. The design of the drill bit allows for the waste metal—i.e., chips—to fall away from the workpiece. There are several types of drill bits, each of which is used for a specific application. Types of drill bits available include spotting drills (for producing shallow or pilot holes), peck drills (for reducing the amount of chips on the workpiece), screw machine drills (for producing holes without a pilot hole), and chucking reamers (for enlarging previously produced holes).

Typically the CNC drilling process also utilizes CNC-enabled drill presses, which are specifically designed to perform the drilling operation. However, the operation can also be performed by turning, tapping, or milling machines.

CNC Milling Equipment
Milling employs rotating multi-point cutting tools to shape the workpiece. Milling tools are either horizontally or vertically oriented and include end mills, helical mills, and chamfer mills.

The CNC milling process also utilizes CNC-enabled milling machinery, referred to as mill machines or mills, which can be horizontally or vertically oriented. Basic mills are capable of three-axis movements, with more cnc training in chennai advanced models accommodating additional axes. The types of mills available include hand milling, plain milling, universal milling, and omniversal milling machines.

CNC Turning Equipment
Turning employs single-point cutting tools to remove material from the rotating workpiece. The design of the turning tool varies based on the particular application, with tools available for roughing, finishing, facing, threading, forming, undercutting, parting, and grooving applications.

The CNC turning process also utilizes CNC-enabled lathes or turning machines. The types of lathes available include turret lathes, engine lathes, and special-purpose lathes.

CNC Machine Models
CNC machines are available in standard and desktop models. Standard CNC machines are the typical industry standard machines, which can be designated to perform a specific machine operation, such as drill presses, or perform multiple operations, such as milling and turning machines. Desktop CNC machines are smaller, more lightweight machines resembling their larger counterparts. Typically the desktop models handle softer materials, such as foam and plastic, smaller parts, and are suitable for light to moderate production outputs. The types of cnc training in chennai desktop CNC machines available include plotter-sized laser cutters and milling machines, and desktop or benchtop lathes.

Material Considerations
The CNC machining process is suitable for a variety of engineering materials, including:

Metal (e.g., aluminum, brass, stainless steel, alloy steel, etc.)
Plastic (e.g., PEEK, PTFE, nylon, etc.)
Wood
Foam
Composites
The optimal material for selection to apply to a CNC manufacturing application is largely dependent on the particular manufacturing application and its specifications. Most materials can be machined provided that they can withstand the machining process—i.e., have sufficient hardness, tensile strength, shear strength, and chemical and temperature resistance.

The workpiece material and its physical properties are used to determine the optimal cutting speed, cutting feed rate, and depth of cut. Measured in surface feet per minute, the cutting speed refers to how fast the machine tool cuts into or removes material from the workpiece. The feed rate—measured in inches per minute—is a measure of how fast the workpiece is fed towards the machine tool, and the cut depth is how deep the cutting tool cuts into the workpiece. Typically, the workpiece will first undergo an initial phase in which it is roughly machined to the approximate, custom-designed shape and dimensions, and then undertake a finishing phase in which it experiences slower feed rates and shallower cut depths to achieve its more precise and accurate specifications.

Size Considerations
The wide range of capabilities and operations offered by the CNC machining process help it to find application in a variety of industries, including automotive, aerospace, construction, and agriculture, and enable it to produce a range of products, such as hydraulic components, screws, and shafts. Despite the versatility and customizability of the process, the manufacturing of some parts—e.g., large or heavy components—present greater challenges than others. Table 1, below, outlines some of the challenges of machining large parts and heavy components.

Although CNC machining demonstrates advantages over other manufacturing processes, it may not be appropriate for every manufacturing application, and other processes may prove more suitable and cost-effective. While this article focuses on the mechanical CNC machining processes which employ machine tools to produce the custom-designed part or product, CNC controls can be integrated into a variety of machines. Other mechanical CNC machining processes include ultrasonic machining, waterjet cutting, and abrasive jet machining.

Besides mechanical processes, chemical, electrochemical, and thermal machining processes are also available. Chemical machining processes include chemical milling, blanking, and engraving; electrochemical machining processes include electrochemical deburring and grinding; and thermal machining processes include electron beam machining, laser cutting, plasma arc cutting, and electrical discharge machining (EDM).




http://www.cnctraining.in/
Author Resource:- We are offering best CNC Training in Chennai. Our CNC Training Centre is located in all over Chennai. Contact us for more details about CNC Training.

http://www.cnctraining.in/
Article From Articles Promoter Article Directory

HTML Ready Article. Click on the "Copy" button to copy into your clipboard.




Firefox users please select/copy/paste as usual
New Members
select
Sign up
select
learn more
Affiliate Sign in
Affiliate Sign In
 
Nav Menu
Home
Login
Submit Articles
Submission Guidelines
Top Articles
Link Directory
About Us
Contact Us
Privacy Policy
RSS Feeds

Actions
Print This Article
Add To Favorites

 

Free Article Submission

Website Security Test